
Linear Data Structures

Presented by Hiba Hamidi

Stacks and Queues

Stack
Data structure

01

01

Introduction to stacks
Stack data structure is a linear data structure that

accompanies a principle known as LIFO (Last In First Out)
or FILO (First In Last Out).

01

Real life examples

Stack of plates Stack of books

01

Library
To use a stack, you have to include the <stack> header file:

01

Create a stack
To create a stack, use the stack keyword, and specify the type of values
it should store within angle brackets <> and then the name of the stack,
like: stack<type> stackName.

01

NOTE !!!
You CANNOT add elements to the stack at the time of declaration, like
you can with vectors:

https://www.w3schools.com/cpp/cpp_vectors.asp

01

Add Elements

01

Add Elements
To add elements to the stack, use the .push() function, after declaring
the stack:

01

Remove Elements

01

Remove Elements
You can use the .pop() function to remove an element from the stack.

01

Access Stack Elements
In a stack, you can only access the top element, which is done using the
.top() function:

Get the Size of the Stack
To find out how many elements a stack has, use the .size() function:

01

Check if the Stack is Empty
Use the .empty() function to find out if the stack is empty or not.
The .empty() function returns 1 (true) if the stack is empty and 0 (false)
otherwise:

01

Time and space complexity

01

● Push
 ○ Time complexity - ___?
● Pop
 ○ Time complexity - ___?
● Peek
 ○ Time complexity - ___?
● isEmpty()
 ○ Time complexity - ___?

Time and space complexity

01

● Push
 ○ Time complexity - O(1)
● Pop
 ○ Time complexity - O(1)
● Peek
 ○ Time complexity - O(1)
● isEmpty()
 ○ Time complexity - O(1)

Queue
Data structure

01

01

Introduction to queues
A collection whose elements are added at one end (the
back) and removed from the other end (the front). Uses

FIFO data handling

01

Real life examples

01

Library
To use a stack, you have to include the <queue> header file:

01

Create a queue
To create a queue, use the queue keyword, and specify the type of
values it should store within angle brackets <> and then the name of
the queue, like: queue<type> queueName.

01

NOTE !!!
You CANNOT add elements to the stack at the time of declaration, like
you can with vectors:

https://www.w3schools.com/cpp/cpp_vectors.asp

01

Add Elements

01

Add Elements
To add elements to the queue, you can use the .push() function after
declaring the queue.

01

Remove Elements

01

Remove Elements
You can use the .pop() function to remove an element from the queue.

01

Access Queue Elements
In a queue, you can only access the element at the front or the back,
using .front() and .back() respectively:

Get the Size of the Queue
To find out how many elements a queue has, use the .size() function:

01

Check if the Queue is Empty
Use the .empty() function to find out if the queue is empty or not.
The .empty() function returns 1 (true) if the queue is empty and 0 (false)
otherwise:

01

Time and space complexity

01

● Push
 ○ Time complexity - ___?
● Pop
 ○ Time complexity - ___?
● Peek
 ○ Time complexity - ___?
● isEmpty()
 ○ Time complexity - ___?

Time and space complexity

01

● Push
 ○ Time complexity - O(1)
● Pop
 ○ Time complexity - O(1)
● Peek
 ○ Time complexity - O(1)
● isEmpty()
 ○ Time complexity - O(1)

