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Introduction to stacks
Stack data structure is a linear data structure that

accompanies a principle known as LIFO (Last In First Out)
or FILO (First In Last Out). 
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Real life examples

Stack of plates Stack of books
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Library
To use a stack, you have to include the <stack> header file:
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Create a stack
To create a stack, use the stack keyword, and specify the type of values
it should store within angle brackets <> and then the name of the stack,
like: stack<type> stackName.
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NOTE !!!
You CANNOT add elements to the stack at the time of declaration, like
you can with vectors:

https://www.w3schools.com/cpp/cpp_vectors.asp
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Add Elements
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Add Elements
To add elements to the stack, use the .push() function, after declaring
the stack:



01

Remove Elements
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Remove Elements
You can use the .pop() function to remove an element from the stack.
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Access Stack Elements
In a stack, you can only access the top element, which is done using the
.top() function:



Get the Size of the Stack
To find out how many elements a stack has, use the .size() function:
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Check if the Stack is Empty
Use the .empty() function to find out if the stack is empty or not.
The .empty() function returns 1 (true) if the stack is empty and 0 (false)
otherwise:
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Time and space complexity 
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● Push 
    ○ Time complexity - ___? 
● Pop 
    ○ Time complexity - ___? 
● Peek
    ○ Time complexity - ___? 
● isEmpty()
    ○ Time complexity - ___?



Time and space complexity 
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● Push 
    ○ Time complexity -  O(1) 
● Pop 
    ○ Time complexity -  O(1)
● Peek
    ○ Time complexity -  O(1)
● isEmpty()
    ○ Time complexity -  O(1)
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Introduction to queues
A collection whose elements are added at one end (the
back) and removed from the other end (the front). Uses

FIFO data handling
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Real life examples
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Library
To use a stack, you have to include the <queue> header file:
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Create a queue
To create a queue, use the queue keyword, and specify the type of
values it should store within angle brackets <> and then the name of
the queue, like: queue<type> queueName.
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NOTE !!!
You CANNOT add elements to the stack at the time of declaration, like
you can with vectors:

https://www.w3schools.com/cpp/cpp_vectors.asp
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Add Elements
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Add Elements
To add elements to the queue, you can use the .push() function after
declaring the queue.
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Remove Elements
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Remove Elements
You can use the .pop() function to remove an element from the queue.
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Access Queue Elements
In a queue, you can only access the element at the front or the back,
using .front() and .back() respectively:



Get the Size of the Queue
To find out how many elements a queue has, use the .size() function:
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Check if the Queue is Empty
Use the .empty() function to find out if the queue is empty or not.
The .empty() function returns 1 (true) if the queue is empty and 0 (false)
otherwise:
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Time and space complexity 
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● Push 
    ○ Time complexity - ___? 
● Pop 
    ○ Time complexity - ___? 
● Peek
    ○ Time complexity - ___? 
● isEmpty()
    ○ Time complexity - ___?



Time and space complexity 
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● Push 
    ○ Time complexity -  O(1) 
● Pop 
    ○ Time complexity -  O(1)
● Peek
    ○ Time complexity -  O(1)
● isEmpty()
    ○ Time complexity -  O(1)


