-
N e

Linear D¢

§



Push

Top —| C

Data structure B B |<— Top

O1




N

Intfroduction To stacks

data structure is a linear data structure that
accompanies a principle known as
or

O1




N 4

Redl life examples

Stack of plates Stack of books

yV N o1



N

Library

To use a stack, you have to include the header file:
// Include the stack library
#include <stack:>

‘ o1




N

Create a stack

To create a stack, use the keyword, and specify the
it should store within angle brackets <> and then the .
like: < >

// Create a stack of strings called cars
stack<string> cars;

O1




N

NOTE ™!

You CANNOT add elements to the stack at the time of declaration, like
you can with :

stack<string>» cars = {"Volvo™, "BMW", "Ford"”, "Mazda

1os::sync_with_stdio
cin.tie(@);
> h1i({1,2,3}),

<< hi.top() <<

O1



https://www.w3schools.com/cpp/cpp_vectors.asp

N

Add Elements

3
| 2 F’ush\'
F’ush\' 2

il 1

yV N o1



N

Add Elements

To add elements to the stack, use the function, after declaring
the stack:

// Create a stack of strings called cars

stack<string> cars,;

// Add elements to the stack
cars.push("Volvo");
cars.push("BMW");

cars.push("Ford");

cars.push("Mazda");

O1




N

Remove Elements

I
f;; @;4
1

=2
2 |
1

yV N o1



N

Remove Elements

You can use the function to remove an element from the stack.

// Create a stack of strings called cars

stack<string> cars;

// Add elements to the stack
cars.push("Volvo");
cars.push("BMW");

cars.push("Ford");

cars.push("Mazda™);

// Remove the last added element (Mazda)

cars.pop();

O1




N

Access Stack Elements

In a stack, you can only access the top element, which is done using the
function:

O1




N

Get The Size of The Stack

To find out how many elements a stack has, use the function:

O1




N

Check If The Stack is Empty

Use the function to find out if the stack is empty or not.
The .empty() function if the stack is empty and
otherwise:

O1




N

Time and space complexity

@® Push

O Time complexity - __?
® Pop

O Time complexity - __?
@ Peck

O Time complexity - __?
@ isEmpty()

O Time complexity - ___?

O1




N

Time and space complexity

@® Push

O Time complexity - O(1)
® Pop

O Time complexity - O(1)
@ Peck

O Time complexity - O(1)
@ isEmpty()

O Time complexity - O(1)

O1




Data structure

O1




N

Infroduction To queues

A collection whose elements are added at one end (the
back) and removed from the other end (the front). Uses
data handling

— HEI

— gp—

‘ o1



N 4

Redl life examples

O1




N

Library

To use a stack, you have to include the header file:

// Include the queue library
#include <qgueue:>

O1




N

Create a queue

To create a queue, use the keyword, and specify
it should store within angle brackets <> and then
, like: < >

// Create a queue ot strings called cars
queue<string> cars;

‘ o1




N

NOTE ™!

You CANNOT add elements to the stack at the time of declaration, like
you can with :

lIBMLﬂ.IIT-’ ITFDPdIIJ L1l |

queue<string> cars = {"Volvo",

queue<int> hiba({1,2,3}),

cout << hiba.front() << "

O1


https://www.w3schools.com/cpp/cpp_vectors.asp

N

Add Elements

push(5) push(4)

O1




N

Add Elements

To add elements to the queue, you can use the function after
declaring the queue.

—

'/ Create a queue of strings The queue will look like this:

queue<string> cars;

Volvo (front (first) element)

// Add elements to the queue
.push("Volvo"); BMW
.push("BMW™"); Ford

-push("Ford”); Mazda (back (last) element)

.push("Mazda");

O1



N

Remove Elements

pop () pop()

|l

Ol




N

Remove Elements

You can use the function to remove an element from the queue.

// Create a queue of strings

queue<string> cars;

// Add elements to the queue

cars.push("Volvo™);
cars.push("BMW");

cars.push("Ford™);

cars.push("Mazda™);

// Remove the front element (Volvo)

cars.pop();

O1




N

Access Queue Elements

In a queue, you can only access the element at the front or the back,
using and respectively:

// Access the front element (first and oldest)
cout << cars.front(); // Outputs "Volvo"

// Access the back element (last and newest)

cout << cars.back(); // Outputs "Mazda"

O1



N

Get The Size of The Queue

To find out how many elements a queue has, use the function:

O1




N

Check if The Queue Iis Empty

Use the function to find out if the queue is empty or not.
The .empty() function if the queue is empty and
otherwise:

O1




N

Time and space complexity

@® Push

O Time complexity - __?
® Pop

O Time complexity - __?
@ Peck

O Time complexity - __?
@ isEmpty()

O Time complexity - ___?

O1




N

Time and space complexity

@® Push

O Time complexity - O(1)
® Pop

O Time complexity - O(1)
@ Peck

O Time complexity - O(1)
@ isEmpty()

O Time complexity - O(1)

O1




